Math, asked by sayansahu, 1 year ago

prove the following:
 \sqrt{ \frac{1 +  \sin(a) }{1 -  \sin(a) } }  =  \tan(a)  +  \sec(a)
THE FIRST ONE TO ANSWER WILL BE MARKED AS BRIANLIEST

PLZZ HELP

Answers

Answered by siddhartharao77
1
Given :  \sqrt{ \frac{1+sina}{1-sina} }

 = \ \textgreater \   \sqrt{ \frac{1 + sina}{1-sina} *  \frac{1+sina}{1+sina}   }

= \ \textgreater \   \sqrt{ \frac{(1 + sina)^2}{(1^2 - sin^2a)} }

= \ \textgreater \   \sqrt{ \frac{(1 + sina)^2}{cos^2a} }

= \ \textgreater \   \frac{1+sina}{cosa}

= \ \textgreater \  seca + tana


Hope this helps!
Similar questions