Math, asked by madhav5245, 14 hours ago

Prove the following

tan(195 \degree) = 2 -  \sqrt{3}


Please provide step by step solution ​

Answers

Answered by bobbypandey950
0

Answer:

Value of tan195 degrees is 2√3+2.

Step-by-step explanation:

Tan195 can be written as tan60+tan60+tan60+tan15. The value of tan60 is √3 and tan15 is 2-√3. So we get

√3+√3+√3+2-√3=2√3+2

hope it helps pls mark me the branliest and thank me

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\:tan(195 \degree)

\rm \:  =  \: tan(90\degree \times 2 + 15\degree)

We know,

\boxed{\tt{ tan(180\degree + x) = tanx \: }} \\

So, using this identity, we get

\rm \:  =  \: tan15\degree

\rm \:  =  \: tan(45\degree - 30\degree)

We know,

\boxed{\tt{ tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany}}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{tan45\degree - tan30\degree}{1 + tan45\degree \: tan30\degree}

\rm \:  =  \: \dfrac{1 - \dfrac{1}{ \sqrt{3} } }{1 + \dfrac{1}{ \sqrt{3}}  \times 1}

\rm \:  =  \: \dfrac{1 - \dfrac{1}{ \sqrt{3} } }{1 + \dfrac{1}{ \sqrt{3}}}

\rm \:  =  \: \dfrac{\dfrac{ \sqrt{3}  - 1}{ \sqrt{3} } }{\dfrac{ \sqrt{3} +  1}{ \sqrt{3}}}

\rm \:  =  \: \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \times \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}

\rm \:  =  \: \dfrac{ {( \sqrt{3} - 1) }^{2} }{ {( \sqrt{3}) }^{2}  -  {1}^{2} }

\rm \:  =  \: \dfrac{3 + 1 - 2 \sqrt{3} }{3 - 1}

\rm \:  =  \: \dfrac{4 - 2 \sqrt{3} }{2}

\rm \:  =  \: \dfrac{2(2 - \sqrt{3})}{2}

\rm \:  =  \: 2 -  \sqrt{3}

Hence,

\rm\implies \:\boxed{\tt{ tan195\degree = 2 -  \sqrt{3} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\boxed{\tt{ sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx \: }} \\

\boxed{\tt{ sin(x - y) = sinx \: cosy \:   -  \: siny \: cosx \: }} \\

\boxed{\tt{ cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny \: }} \\

\boxed{\tt{ cos(x  -  y) = cosx \: cosy \:   + \: sinx \: siny \: }} \\

\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany} \: }} \\

\boxed{\tt{ cot(x + y) =  \frac{cotx \: coty \:  -  \: 1}{coty \:  +  \: cotx}}} \\

\boxed{\tt{ cot(x  -  y) =  \frac{cotx \: coty \: +  \: 1}{coty \: - \: cotx}}} \\

\boxed{\tt{  {sin}^{2}x -  {sin}^{2}y = sin(x + y) \: sin(x - y) \: }} \\

\boxed{\tt{  {cos}^{2}x -  {sin}^{2}y = cos(x + y) \: cos(x - y) \: }} \\

Similar questions