Math, asked by zeyafatma948, 6 months ago

Prove the following tognometry identittes.
(1 - Cos²A) Cosec²A = 1​

Answers

Answered by Anonymous
7

Answer:

Given:-

  • (1-Cos²A) Cosec²A= 1

Find:-

  • Prove it

Solution:-

(1-Cos²A) Cosec²A= 1

From trigonometry identity

{ \huge{ \boxed{ \sf{  {sin}^{2} A+ {cos}^{2}A = 1 }}}}

{ \to{ \sf{(1-Cos²A) Cosec²A= 1}}}

{ \to{ \sf{(sin²A) \times   \frac{1}{sin²A} = 1}}}

{ \to{ \sf{{ \cancel{sin²A}} \times  \frac{1}{{ \cancel{sin²A}}} = 1 }}}

{ \to{  \sf{1 = 1}}}

{ \therefore{LHS =RHS }}

Hence proved

Similar questions