Prove the following trignometric identities.
Answers
Answer with Step-by-step explanation:
Given : cosθ / (cosecθ + 1) + cosθ / (cosecθ − 1) = 2tanθ
L.H.S = cosθ / (1/ sinθ + 1) + cosθ / ( 1/sinθ − 1)
[By using, cosecθ = 1/ sinθ]
= cosθ / [(1+ sinθ) /sinθ] + cosθ/[(1− sinθ)/sinθ]
[By taking LCM ]
= (cosθ) × (sinθ)/(1 + sinθ) + (cosθ) × (sinθ)/ (1 −sinθ)
= (1 − sinθ)(sinθcosθ) + (sinθcosθ) (1 + sinθ) / [(1 + sinθ)( 1 − sinθ)]
[By taking LCM ]
= sinθcosθ − sin²θcosθ + sinθcosθ + sin² θcosθ / (1 - sin²θ)
[By using identity , (a + b) (a - b) = a² - b²]
= (2sinθcosθ) / cos²θ
[By using the identity, (1 - sin²θ) = cos²θ]
= 2sinθ/cosθ
= 2tanθ
[By using the identity, tanθ = sinθ/cosθ ]
cosθ / (cosecθ + 1) + cosθ / (cosecθ − 1) = 2tanθ
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU…
here is your answer
hope so it may help you
please mark me as the Brainliest answer..:-)