Prove the following trigonometric identities:
1+cosθ+sinθ/1+cosθ-sinθ=1+sinθ/cosθ
Answers
Answered by
0
Step-by-step explanation:
please mark me.as brainliest
Attachments:
Answered by
0
(1 + Sinθ) / Cosθ = 1+cosθ+sinθ / 1+cosθ-sinθ proved
Step-by-step explanation:
To prove: 1+cosθ+sinθ / 1+cosθ-sinθ = 1 + sinθ/ cosθ
Proof:
Cos²θ = 1 - Sin²θ
Cosθ. Cosθ = (1 - Sinθ) (1 + Sinθ)
Cosθ / (1 - Sinθ) = (1 + Sinθ) / Cosθ = [Cosθ + (1 + Sinθ)] / [(1 - Sinθ) + Cosθ] from the theorem on equal ratios.
(1 + Sinθ) / Cosθ = 1+cosθ+sinθ / 1+cosθ-sinθ
RHS = LHS
Hence proved.
Similar questions