Prove the following trigonometric identities. (1 + tan²θ) (1 − sinθ) (1 + sinθ) = 1
Answers
Answered by
6
( 1 + tan²thetha) ( 1 - sin²thetha)
sec²thetha * Cos² thetha
= 1 Answer.....
Answered by
1
Answer with Step-by-step explanation:
Given : (1 + tan²θ)(1 – sin θ)(1 + sin θ) = 1
L.H.S = (1 + tan²θ)(1 – sin θ)(1 + sin θ)
= (1 + tan²θ)( (1 – sin²θ)
[By using the identity, (a + b)(a – b) = a² – b²]
= sec²θ × cos²θ
[By using the identity, (1- sin²θ) = cos²θ & 1 + tan²θ = sec²θ]
= (1/cos²θ) × cos²θ
[By using the identity, secθ = 1/ cosθ]
= 1
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Similar questions