Prove the following trigonometric identities. (cosecθ + sinθ) (cosecθ − sinθ) = cot²θ+cos²θ
Answers
Answer with Step-by-step explanation:
Given : (cosec θ + sin θ)(cosec θ – sin θ) = cot²θ + cos²θ
L.H.S : (cosec θ + sin θ)(cosec θ – sin θ)
= cosec²θ – sin² θ
[By using the identity, (a + b)(a – b) = a² – b²]
[By using the identity,cosec²θ = 1 + cot² θ and sin² θ = 1 – cos² θ]
= (1 + cot² θ) – (1 – cos² θ)
= 1 + cot² θ – 1 + cos² θ
= cot² θ + cos²θ
(cosec θ + sin θ)(cosec θ – sin θ) = cot²θ + cos²θ
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answer:
proved
Step-by-step explanation:
LHS = (cosecθ)^2 - (sinθ)^2
RHS = cot²θ+cos²θ
= cos²θ[ (1/sinθ)^2 + 1]
= [ (sinθ)^2 + 1 ]
----------------------- * [1- (sinθ)^2 ]
(sinθ)^2
= 1- (sinθ)^4
-----------------
(sinθ)^2
= (cosecθ)^2 - (sinθ)^2