Prove the following trigonometric identities. (cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Answers
Answered by
0
Answer with Step-by-step explanation:
Given : (cosecA – sinA)(secA – cosA)(tanA + cotA) = 1
L.H.S = (cosecA – sinA)(secA – cosA)(tanA + cotA)
= (1/sinA – sinA)( 1/cosA – cosA)( sinA/cosA + cosA/sinA)
[By using the identity,cosecA = 1/sinA, secA = 1/cosA, tanA = sinA/cosA, cotA = cosA/sinA]
= (1 − sin²A/sinA) × (1 − cos²A/cosA) × (sin²A + cos²A/sinA×cosA)
= (cos ²A/sinA) (sin²A/cosA) (1/sinA cosA)
[By using the identity, (1 - sin²θ) = cos²θ,(1− cos²θ = sin²θ & sin² θ + cos² θ = 1]
= (cos²A × sin²A)/(sin²A cos²A)
= 1
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answered by
6
Attachments:
Similar questions
Science,
5 months ago
Computer Science,
5 months ago
Computer Science,
11 months ago
Math,
11 months ago
Physics,
1 year ago
Physics,
1 year ago
Psychology,
1 year ago