Prove the following trigonometric identities.
(i)
(ii)
Answers
Answer with Step-by-step explanation:
Given :
(i) √(1 + sinA)/(1 − sinA) = sec A + tan A
LHS = √(1 + sinA)/√(1 - sinA)
= √[(1 + sinA) × √(1 + sinA)] / [√(1 -sinA) × √(1 + sinA) ]
[By rationalising]
= √(1 + sinA)²/√(1 - sin²A)
[By using an identity , (a + b) (a - b) = a² - b² ]
= (1 + sinA)/√cos²A
[By using the identity, (1- sin²θ) = cos²θ
= (1 + sinA)/cosA
= 1/cosA + sinA/cosA
= secA + tanA
[By using the identity, secθ = 1/ cosθ & tanθ = sinθ/cosθ]
√(1 + sinA)/(1 − sinA) = sec A + tan A
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
(ii)
Given : √(1- cosA)/(1 + cosA) = cosec A - cotA
LHS : √(1- cosA)/(1+ cosA)
= √[(1- cosA) ×(1- cosA) /(1+ cosA) × (1- cosA)]
[By rationalising]
= √(1- cosA)²/(1 - cos²A)
[By using an identity , (a + b) (a - b) = a² - b²]
= √[(1- cosA)²/(sin²A)]
[By using an identity, (1- cos²θ) = sin²θ]
= (1 - cosA)/(sinA)
= 1/sinA - cosA/sinA
= cosecA - cotA
[By using the identity, cosecθ = 1/sinθ & cotθ = cos θ/sinθ]
√(1- cosA)/(1+ cosA) = cosec A - cotA
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answer:
Refer to the attachment for your answer.