Prove the following trigonometric identities. secA (1 − sinA) (secA + tanA) = 1
Answers
Answered by
1
Answer with Step-by-step explanation:
Given : secA(1 – sinA)(secA + tanA) = 1
L.H.S = secA(1 – sinA)(secA + tanA)
= 1/cosA × (1 – sinA) × (1/cosA + sinA / cosA)
[By using the identity, secA = 1/cosA and tanA = sinA/cosA]
= 1/cosA × (1 – sinA) × [(1 + sinA) / cosA]
= (1 – sinA)(1 + sinA)/cos²A
= (1 - sin²A ) / cos²A
[By using the identity, (a + b)(a – b) = a² – b²]
= cos² A/cos2A
[By using the identity, (1 - sin²θ) = cos²θ]
= 1
secA(1 – sinA)(secA + tanA) = 1
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answered by
1
Answer:
Refer to the attachment for your answer.
Attachments:
Similar questions