Prove the following trigonometric identities.
tan(sq)theata×cos(sq)theata=1−cos(sq)theata
Answers
Answered by
0
LHS=tan²A×cos²A
=(sin²A×cos²A)/cis²A
=sin²A
=1-cos²A
as sin²A+cos²A=1
=(sin²A×cos²A)/cis²A
=sin²A
=1-cos²A
as sin²A+cos²A=1
Anonymous:
thx bro
Answered by
0
L.H.S
Tan^2ϴ × cos^2ϴ
(Sin^2ϴ/cos^2ϴ) × cos^2ϴ
Sin^2ϴ
Hence, 1-cos^2ϴ [sin^2ϴ=1-cos^2ϴ]
(Proved L.H.S = R.H.S)
Tan^2ϴ × cos^2ϴ
(Sin^2ϴ/cos^2ϴ) × cos^2ϴ
Sin^2ϴ
Hence, 1-cos^2ϴ [sin^2ϴ=1-cos^2ϴ]
(Proved L.H.S = R.H.S)
Similar questions