Math, asked by ramdastudu5937, 1 year ago

Prove the following trigonometric identities:
tan²θ-sin²θ=tan²sθin²θ

Answers

Answered by SharmaShivam
3

Question:

\sf{Prove\:that\:tan^2\theta-sin^2\theta=tan^2\theta\:sin^2\theta}

Identities Used:

\sf{1-cos^2\theta=sin^2\theta}\\\sf{\dfrac{sin\theta}{cos\theta}=tan\theta}

Solution:

\sf{Taking\:L.H.S,}

\sf{tan^2\theta-sin^2\theta}

\sf{\dfrac{sin^2\theta}{cos^2\theta}-sin^2\theta}

\sf{\dfrac{sin^2\theta-sin^2\theta\:cos^2\theta}{cos^2\theta}}

\sf{Taking\:sin^2\theta\:as\:common}

\sf{\dfrac{sin^2\theta\left(1-cos^2\theta\right)}{cos^2\theta}}

\sf{\dfrac{sin^2\theta}{cos^2\theta}sin^2\theta}

\boxed{\sf{\tan^2\theta\:sin^2\theta}}

\sf{L.H.S=R.H.S}

\sf{\mathrm{HENCE\:PROVED}}

Answered by Anonymous
1

HOPE IT HELPS,

PLEASE THANK,FOLLOW AND MARK AS BRAINLIEST.

Attachments:
Similar questions