Prove the following trigonometric identities.
Answers
Answer with Step-by-step explanation:
Given :
cosec⁶θ = cot⁶θ + 3cot²θ cosec²θ + 1
[By using an identity, cosec²θ − cot²θ = 1]
On cubing both sides of the above identity,
(cosec²θ − cot²θ)³ = 1³
(cosec²θ)³ −(cot²θ)³ - 3cosec²θcot²θ(cosec²θ − cot²θ) = 1
[By using an identity, (a - b)³ = a³ − b³ = (a − b) - 3ab(a -b)]
cosec⁶θ − cot⁶θ –3cosec²θcot²θ = 1
[By using an identity, cosec² θ - cot² θ = 1]
cosec⁶θ = cot⁶θ + 3cosec²θcot²θ + 1
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
According to the Question:
» cosec⁶θ = cot⁶θ + 3cot²θ cosec²θ + 1
Note: Using identity - cosec²θ − cot²θ = 1
Now on cubing the above extracted identity, we have :-
» cosec²θ − cot²θ)³ = 1³
» (cosec²θ)³ −(cot²θ)³ - 3cosec²θcot²θ(cosec²θ − cot²θ) = 1
Note: Using identity - (a - b)³ = a³ − b³ = (a − b) - 3ab(a -b)
» cosec⁶θ − cot⁶θ –3cosec²θcot²θ = 1
Note: Using identity - cosec² θ - cot² θ = 1
We have,
» cosec⁶θ = cot⁶θ + 3cosec²θcot²θ + 1
_______________[VERIFIED]