Prove the following trigonometric identities.
Answers
Answer with Step-by-step explanation:
Given :
(1 + cos θ − sin²θ) / sinθ(1 + cosθ) = cot θ
LHS : = (1 + cos θ − sin²θ) / sinθ(1 + cosθ)
= [1 + cosθ − (1+ cos²θ)] / sinθ(1 + cosθ)
[By using an identity, sin²θ = (1- cos²θ)]
= [1 + cosθ − 1 + cos²θ] / sinθ(1+cosθ)
= [ cosθ + cos²θ)] / sinθ(1+cosθ)
= cosθ(1 + cosθ)] / sinθ(1 + cosθ)
= cosθ/sinθ
= cotθ
(1 + cos θ − sin²θ) / sinθ(1+ cosθ) = cot θ
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU…
According to the Question :
» (1 + cos θ − sin²θ) / sinθ(1 + cosθ) = cot θ
Where,
LHS : » (1 + cos θ − sin²θ) / sinθ(1 + cosθ)
» [1 + cosθ − (1+ cos²θ)] / sinθ(1 + cosθ)
Note: Using Identity - sin²θ = (1- cos²θ)
» [1 + cosθ − 1 + cos²θ] / sinθ(1+cosθ)
» [ cosθ + cos²θ)] / sinθ(1+cosθ)
» cosθ(1 + cosθ)] / sinθ(1 + cosθ)
» cosθ/sinθ ⇒ cotθ
Also,
» (1 + cos θ − sin²θ) / sinθ(1+ cosθ) = cot θ
∴ LHS = RHS _____[VERIFIED]