Math, asked by BrainlyHelper, 1 year ago

Prove the following trigonometric identities. \frac{1-cosA}{1+cosA}=(cotA-cosecA)^{2}

Answers

Answered by nikitasingh79
1

Answer with Step-by-step explanation:

Given :  (1– cosA)/(1 + cosA) = (cot A – cosecA)²

LHS : (1– cosA)/(1+ cosA)

= [(1− cosA)(1− cosA)]/[(1+ cosA)(1− cosA)]

[By Rationalising]

= (1− cosA)²/(1− cos²A)

= (1 + cos² A - 2cosA)/sin²A

[By using identity , (a + b)² = a² + 2ab + b² & (1- cos²θ) = sin²θ]

= 1/sin²A + cos² A/sin²A - 2cosA/sin²A

= cosec²A + cot²A - 2cosA/sinA × 1/sinA

[By using the identity, cosecθ = 1/sinθ, cotA = cosA/sinA ]

= cosec²A + cot²A - 2cotA × cosecA

= (cot A – cosecA)²

[By using identity , a² - 2ab + b² = (a - b)² ]

(1– cosA)/(1 + cosA) = (cot A – cosecA)²

L.H.S = R.H.S  

Hence Proved..

HOPE THIS ANSWER WILL HELP YOU...

Answered by SulagnaRoutray
0

Answer:

Refer to the attachment for your answer.

Attachments:
Similar questions