Prove the following trigonometric identities.
Answers
Answered by
1
Answer with Step-by-step explanation:
Given : (1– cosA)/(1 + cosA) = (cot A – cosecA)²
LHS : (1– cosA)/(1+ cosA)
= [(1− cosA)(1− cosA)]/[(1+ cosA)(1− cosA)]
[By Rationalising]
= (1− cosA)²/(1− cos²A)
= (1 + cos² A - 2cosA)/sin²A
[By using identity , (a + b)² = a² + 2ab + b² & (1- cos²θ) = sin²θ]
= 1/sin²A + cos² A/sin²A - 2cosA/sin²A
= cosec²A + cot²A - 2cosA/sinA × 1/sinA
[By using the identity, cosecθ = 1/sinθ, cotA = cosA/sinA ]
= cosec²A + cot²A - 2cotA × cosecA
= (cot A – cosecA)²
[By using identity , a² - 2ab + b² = (a - b)² ]
(1– cosA)/(1 + cosA) = (cot A – cosecA)²
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answered by
0
Answer:
Refer to the attachment for your answer.
Attachments:
Similar questions