Prove the following trigonometric identities.
Answers
Answered by
3
Answer with Step-by-step explanation:
Given : (1− sinθ)/(1+ sinθ) = (secθ − tanθ)²
L.H.S = (1− sinθ)/(1+ sinθ)
= [(1− sinθ)(1 - sinθ)] / ](1 + sinθ)(1− sinθ)]
[By rationalising ]
= (1− sinθ)² /(1 - sin²θ)
= (1− sinθ)² /(cos²θ)
[By using the identity, (1- sin²θ) = cos²θ]
= (1− sinθ / cosθ)²
= (1/cosθ − sinθ/cosθ)²
= (secθ − tanθ)²
[By using the identity, sec θ =1/cosθ & sinθ/cosθ = tanθ]
(1− sinθ)/(1+ sinθ) = (secθ − tanθ)²
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answered by
1
Answer:
See the pic for your answer
Attachments:
Similar questions
World Languages,
6 months ago
Physics,
6 months ago
Hindi,
6 months ago
English,
1 year ago
English,
1 year ago