Prove the following trigonometric identities.
Answers
Answer with Step-by-step explanation:
Given :
(cotA − cosA)/(cotA + cosA) = (cosecA−1)/(cosecA + 1)
LHS : (cotA − cosA)/(cotA + cosA)
=[(cosA/sinA) −cosA] / [(cosA/sinA) + cosA]
[By using an identity, cotθ = cosθ/sinθ ]
=[(cosA × 1/sinA) −cosA] / [(cosA × 1/sinA) + cosA]
= (cosA × cosecA−cosA) / (cosA × cosecA + cosA)
[By using the identity, 1/sinθ = cosecθ]
= cosA(cosecA − 1) / cosA(cosecA + 1)
= (cosecA − 1)(cosecA +1 )
(cotA − cosA)/(cotA + cosA) = (cosecA−1)/(cosecA + 1)
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU…
Given that :
» (cotA − cosA)/(cotA + cosA) = (cosecA−1)/(cosecA + 1)
Here,
LHS : (cotA − cosA)/(cotA + cosA)
» {(cosA/sinA) −cosA} / {(cosA/sinA) + cosA}
Note: Using identity - cotθ = cosθ/sinθ
» {(cosA × 1/sinA) −cosA} / {(cosA × 1/sinA) + cosA}
» (cosA × cosecA−cosA) / (cosA × cosecA + cosA)
Note: Using identity - 1/sinθ = cosecθ
» cosA(cosecA − 1) / cosA(cosecA + 1)
» (cosecA − 1)(cosecA +1 )
(cotA − cosA)/(cotA + cosA)
» (cosecA−1)/(cosecA + 1)
∴ L.H.S = R.H.S ___[Verified]