Prove the following trigonometric identities.
Answers
Answer with Step-by-step explanation:
Given : (secA − tanA)/(secA + tanA) = cos²A/(1 + sinA)²
LHS = (secA − tanA)/(secA + tanA)
(secA − tanA) × (sec A + tan A)/(secA + tanA) × (sec A + tan A)
[By multiplying the denominator & numerator by (sec A + tan A)]
= [sec²A − tan²A] /(secA + tanA)²
[By using identity , (a + b) (a - b) = a² - b²]
= 1/(secA + tanA)²
[By using an identity, (sec²A − tan²A) = 1]
= 1/ (sec²A + tan²A + 2secAtanA)
[By using identity , (a + b)² = a² + 2ab + b²]
= 1/(1/cos²A + sin²A/cos²A + 2 × 1/cosA × sinA/cosA)
[By using the identity, secθ = 1/ cosθ & tanθ = sinθ/cosθ]
= 1/(1/cos²A + sin²A/cos²A + 2 sinA/cos²A)
= 1/ [(1 + sin²A + 2sinA)/cos²A]
= 1 × cos²A / [(1 + sin²A + 2sinA)]
= cos²A /(1 + sin²A)
[By using identity , a² + 2ab + b² = (a + b)² ]
(secA − tanA)/(secA + tanA) = cos²A/(1 + sinA)²
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answer:
Refer to the attachment for your answer.