Prove the following trigonometric identities.
Answers
Answered by
3
Answer with Step-by-step explanation:
Given :
(sec A – tan A)² = (1− sinA)/(1 + sinA)
LHS : (sec A – tan A)²
= [1/cosA − sinA/cosA]²
[By using the identity, secθ = 1/ cosθ & tanθ = sinθ/cosθ ]
= [ (1− sinA)/cosA]²
[By taking LCM]
= (1 - sinA)²/( cos²A)
= (1− sinA)² / (1− sin²A)
[By using the identity, cos²θ = (1- sin²θ)]
= (1− sinA)²/(1+ sinA)(1− sinA)
[By using identity , a² - b² = (a + b) (a - b)]
= (1− sinA) (1 - sinA)/(1+ sinA)(1− sinA)
= (1− sinA)/(1 + sinA)
(sec A – tan A)² = (1− sinA)/(1 + sinA)
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answered by
0
Answer:
Refer to the attachment for your answer.
Attachments:
Similar questions