Prove the following trigonometric identities.
Answers
Answered by
1
Answer WITH Step-by-step explanation:
Given : (tanθ + 1/cosθ)² + (tanθ − 1/cosθ)² = 2(1 + sin²θ/1 − sin²θ)
LHS : (tanθ + 1/cosθ)² + (tanθ − 1/cosθ)²
= (tanθ + secθ)² + (tanθ − secθ)²
[By using, secθ = 1/ cosθ]
= tan²θ + sec²θ + 2tanθsecθ + tan²θ + sec²θ − 2tanθsecθ
[By using identity , (a ± b)² = a² ± 2ab + b²]
= tan²θ + sec²θ + tan²θ + sec²θ + 2tanθsecθ − 2tanθsecθ
= 2tan²θ + 2sec²θ
= 2[tan²θ + sec²θ]
= 2[sin²θ/cos²θ + 1/cos²θ]
[By using the identity, tanθ = sinθ/cosθ ]
= 2[(1 + sin²θ)/cos²θ)]
[By taking LCM]
= 2[(1 + sin²θ)/(1 - sin²θ)]
[By using the identity, cos²θ = (1- sin²θ) ]
(tanθ + 1/cosθ)² + (tanθ − 1/cosθ)² = 2(1 + sin²θ/1 − sin²θ)
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU…
Answered by
3
Answer:
Refer to the attachment for your answer
Attachments:
Similar questions