Math, asked by BrainlyHelper, 1 year ago

Prove the following trigonometric identities. (tan\Theta+\frac{1}{cos\Theta})^{2}+(tan\Theta-\frac{1}{cos\Theta})^{2} =2(\frac{1+sin^{2}\Theta }{1-sin^{2}\Theta } )

Answers

Answered by nikitasingh79
1

Answer WITH Step-by-step explanation:

Given : (tanθ + 1/cosθ)² + (tanθ − 1/cosθ)² = 2(1 + sin²θ/1 − sin²θ)

LHS :  (tanθ + 1/cosθ)² + (tanθ − 1/cosθ)²

= (tanθ + secθ)² + (tanθ − secθ)²

[By using, secθ = 1/ cosθ]

= tan²θ + sec²θ + 2tanθsecθ + tan²θ + sec²θ − 2tanθsecθ

[By using identity , (a ± b)² = a² ± 2ab + b²]

= tan²θ + sec²θ + tan²θ + sec²θ + 2tanθsecθ − 2tanθsecθ

= 2tan²θ + 2sec²θ

= 2[tan²θ + sec²θ]

= 2[sin²θ/cos²θ + 1/cos²θ]

[By using the identity, tanθ = sinθ/cosθ ]

= 2[(1 + sin²θ)/cos²θ)]

[By taking LCM]

= 2[(1 + sin²θ)/(1 - sin²θ)]

[By using the identity, cos²θ = (1- sin²θ) ]  

(tanθ + 1/cosθ)² + (tanθ − 1/cosθ)² = 2(1 + sin²θ/1 − sin²θ)

L.H.S = R.H.S  

Hence Proved..

HOPE THIS ANSWER WILL HELP YOU…

Answered by SulagnaRoutray
3

Answer:

Refer to the attachment for your answer

Attachments:
Similar questions