Math, asked by efq6rtpf, 9 months ago

Prove the following trigonometric identity: (1+sin^(4)A)/(cos^(4)A)=1+2tan^(2)A*sec^(2)A

Answers

Answered by BrainlyTornado
3

GIVEN:

 \frac{1 +  \sin^4 A }{ { \cos}^{4}  A}  = 1 + ( { \tan}^{2}  A  \times { \sec}^{2} A)

TO PROVE:

 \frac{1 +  \sin^4 A }{ { \cos}^{4}  A}  = 1 + ( { \tan}^{2}  A  \times { \sec}^{2} A)

FORMULAE:

Sin² A = 1 - Cos² A

Tan A = Sin A / Cos A

Sec A = 1 / Cos A

(A - B)² = - 2AB +

PROOF:

 \frac{1 + \sin^4 A }{ { \cos}^{4}  A}  = 1 + 2( { \tan}^{2}  A  \times { \sec}^{2}A) \\  \\  \frac{1 +  {(1  -  { \cos}^{2}  A )}^{2} }{ { \cos}^{4} A  }  = 1  + 2( \frac{ { \sin}^{2}  A }{ { \cos}^{2}  A } \times   \frac{1}{ { \cos}^{2}  A } ) \\  \\   \frac{{1 + 1 +  { \cos}^{4}  A  - 2 { \cos}^{2} A  }}{ { \cos}^{4} A  }  = 1 + 2( \frac{ { \sin}^{2} A  }{ { \cos}^{4}  A })  \\  \\\frac{{2 +  { \cos}^{4}  A - 2 { \cos}^{2} A }}{ { \cos}^{4} A }  =   \frac{ { \cos}^{4} A + 2 { \sin}^{2} A }{ { \cos}^{4} A } \\  \\ 2 +  { \cos}^{4} A - 2 { \cos}^{2} A  =  { \cos}^{4} A +  {2 \sin}^{2}  A  \\  \\ 2   - 2 { \cos}^{2}  A =  2{ \sin}^{2}  A \\  \\ 1   - { \cos}^{2}  A  =  { \sin}^{2}  A \\  \\ L.H.S=R.H.S

HENCE PROVED.

Similar questions