Math, asked by samriddhsaxena, 1 year ago

Prove the following trigonometric identity :
 \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }  =  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }
Fastest and most correct answer = Brainliest Answer.​

Answers

Answered by pav83
1

Step-by-step explanation:

LHS=cosa/(1+Sina)

=cosa/1+sina×1-sina/1-sina

=cosa(1-sina)/1-sin^2a

=cosa(1-sina)/cos^2a

=1-sina/cosa

=RHS

Hence Proved

Answered by YameshPant
1

Step-by-step explanation:

  \frac{ \cos( \alpha ) }{ 1  +   \sin( \alpha )  }

  \frac{ \cos( \alpha ) }{ 1 -+  \sin( \alpha )  }   \times  \frac{1 -  \sin( \alpha ) }{1 -  \sin( \alpha ) }

 \frac{ \cos( \alpha )(1 -  \sin( \alpha )  }{1 -  { \sin( \alpha ) }^{2} }

 \frac{ \cos( \alpha )(1 -  \sin( \alpha )  }{  { \cos( \alpha ) }^{2} }

 \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }

Similar questions