Math, asked by aashipatel2814, 29 days ago

Prove the following trigonometrici identity (1+cot²A) sin²A=1​

Answers

Answered by Anonymous
1

 \bold {Identity :  cosec^2A−cot^2A=1}

 \bold{LHS =(1+cot^2A)sin^2A}

  \bold{ =cosec^2A×sin {}^{2} A }

 \bold{ =  \frac{1}{ \sin^{2}A}  \times  \sin^{2}A}

=1

 \bold {   =RHS}

Answered by hemanji2007
2

Topic:-

Trigonometry

Question:-

Prove \:the \:following\: trigonometrical\: identity\: (1+cot²\theta)sin²\theta=1

Solution:-

We \: know \: that \\  \\  {csc}^{2}  \theta -  {cot}^{2}  \theta = 1 \\  \\  {csc }^{2}  \theta = 1 + co {t}^{2}  \theta \:

 csc²\theta\:=\:1+cot²\theta\:➡1

 So, \: now \: take \: the \: question

Given \: that \:LHS =(1+cot²\theta)sin²\theta

To Find RHS

Substitute the equation➡1 in the given question

(1+cot²\theta)sin²\theta\:=\:csc²\theta\:×sin²\theta

We know That  sin²\theta ×csc²\theta=1

So, RHS=1

Hence Proved\\:

More Information:-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Sinθ ×cscθ=1

cosθ × Secθ=1

tanθ×cotθ=1

Similar questions