Math, asked by khushi15686, 2 days ago

Prove the following trigonometry question

 \frac{sec8x - 1}{sec4x - 1}  =  \frac{tan8x}{tan2x}

Answers

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \dfrac{sec8x - 1}{sec4x - 1}  \\

can be rewritten as

\rm \:  = \dfrac{ \dfrac{1}{cos8x}  - 1}{ \dfrac{1}{cos4x}  - 1}  \\

\rm \:  = \dfrac{ \dfrac{1 - cos8x}{cos8x}}{ \dfrac{1 - cos4x}{cos4x}}  \\

\rm \:  = \dfrac{1 - cos8x}{1 - cos4x}  \times \dfrac{cos4x}{cos8x}  \\

We know,

\boxed{ \rm{ \:cos2x = 1 -  {2sin}^{2}x \: }} \\

So, using this result, we get

\rm \:  = \dfrac{ {2sin}^{2} 4x}{ {2sin}^{2} 2x}  \times \dfrac{cos4x}{cos8x}  \\

\rm \:  =  \: \dfrac{2sin4x \times sin4x \times cos4x}{2sin2x \times sin2x \times cos8x}  \\

can be re-arranged as

\rm \:  =  \: \dfrac{2sin4xcos4x \times sin4x}{2sin2x \times sin2x \times cos8x}  \\

We know,

\boxed{ \rm{ \:2sinxcosx = sin2x \:  \: }} \\

So, using this result, we get

\rm \:  = \dfrac{sin8x \times (2sin2xcos2x)}{2sin2x \times sin2x \times cos8x}  \\

\rm \:  = \dfrac{sin8x \times cos2x}{sin2x \times cos8x}  \\

\rm \:  = \dfrac{sin8x}{cos8x} \times \dfrac{cos2x}{sin2x}  \\

\rm \:  =  \: tan8x \times cot2x \\

\rm \:  = \dfrac{tan8x}{tan2x}  \\

Hence,

\rm\implies \:\rm \: \boxed{ \rm{ \:\dfrac{sec8x - 1}{sec4x - 1}  =  \frac{tan8x}{tan2x}  \:  \: }} \\

\rule{190pt}{2pt}

\begin{gathered} { \boxed{ \begin{array}{c} \underline{\underline{ \color{orange} \text{Additional \: lnformation}}} \\&  \rm \: sin2x  \: =  2 \: sinx \: cosx\:\\ &  \rm \: cos2x = 1 -  {2sin}^{2}x \\ &  \rm \: cos2x =  {2cos}^{2}x - 1 \\ &  \rm \: cos2x =  {cos}^{2}x -  {sin}^{2}x \\ &  \rm \:tan2x =  \dfrac{2tanx}{1 -  {tan}^{2} x} \\ &  \rm \: sin2x =  \dfrac{2tanx}{1 +  {tan}^{2}x } \\ &  \rm \:sin3x = 3sinx -  {4sin}^{3}x \\ &  \rm \: cos3x =  {4cos}^{3}x - 3cosx \\ &  \rm \: tan3x =  \dfrac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x}  \end{array}}}\end{gathered}

Answered by Vanchha262006
4

Answer:

Step-by-step explanation:

Consider LHS ,

As we know sec θ = 1/cos θ

So,

As we know 1 – cos 2x = 2 sin2x

So,

As we know sin 2x = 2 sin x cos x

So,

= tan 8x cot 2x

= RHS

Hence proved

Similar questions