Math, asked by chandavedic, 25 days ago

Prove the following trigonometry value

cos18 \degree =  \frac{ \sqrt{10  +  2 \sqrt{5} } }{4}

Answers

Answered by mathdude500
33

\large\underline{\sf{Solution-}}

Let assume that

\rm \: x = 18\degree \\

\rm \: 5x = 90\degree \\

\rm \: 3x + 2x = 90\degree \\

\rm \: 2x = 90\degree  - 3x\\

\rm \: sin2x = sin(90\degree  - 3x)\\

\rm \: sin2x = cos3x \\

\rm \: 2sinx \: cosx \:  =  \:  {4cos}^{3}x - 3cosx \\

As, cosx is not equals to 0, so cancelled out cosx on both sides, we get

\rm \: 2sinx =  {4cos}^{2}x - 3 \\

\rm \: 2sinx =  {4(1 - sin}^{2}x) - 3 \\

\rm \: 2sinx =  {4 - 4sin}^{2}x - 3 \\

\rm \: 2sinx =  {1 - 4sin}^{2}x  \\

\rm \:  {4sin}^{2}x + 2sinx - 1 = 0 \\

So, its a quadratic equation in sinx, so using Quadratic Formula, we get

\rm \: sinx = \dfrac{ - 2 \:  \pm \:  \sqrt{ {2}^{2}  - 4(4)( - 1)} }{2(4)}  \\

\rm \: sinx = \dfrac{ - 2 \:  \pm \:  \sqrt{ 4 + 16} }{8}  \\

\rm \: sinx = \dfrac{ - 2 \:  \pm \:  \sqrt{ 20} }{8}  \\

\rm \: sinx = \dfrac{ - 2 \:  \pm \:  \sqrt{ 2 \times 2 \times 5} }{8}  \\

\rm \: sinx = \dfrac{ - 2 \:  \pm \: 2 \sqrt{5} }{8}  \\

\rm \: sinx = \dfrac{2( - 1 \:  \pm \:  \sqrt{5} )}{8}  \\

\rm \: sinx = \dfrac{ - 1 \:  \pm \:  \sqrt{5} }{4}  \\

\rm\implies \:sinx = \dfrac{ \sqrt{5}  - 1}{4}  \\

Or

\rm\implies \:sinx = \dfrac{ -  \sqrt{5}  - 1}{4} \:  \:  \:  \:  \{rejected \: as \: sinx > 0 \}  \\

So,

\rm\implies \:sin18\degree = \dfrac{ \sqrt{5}  - 1}{4}  \\

Now, we know that

\rm \:  {sin}^{2}18\degree +  {cos}^{2}18\degree = 1 \\

\rm \: \bigg(\dfrac{ \sqrt{5}  - 1}{4} \bigg)^{2}  +  {cos}^{2} 18 = 1 \\

\rm \: \dfrac{5 + 1 - 2 \sqrt{5} }{16}  +  {cos}^{2}18\degree = 1

\rm \: \dfrac{6 - 2 \sqrt{5} }{16}  +  {cos}^{2}18\degree = 1

\rm \:  {cos}^{2}18\degree = 1 - \dfrac{6 - 2 \sqrt{5} }{16} \\

\rm \:  {cos}^{2}18\degree =  \dfrac{16 - 6  +  2 \sqrt{5} }{16} \\

\rm \:  {cos}^{2}18\degree =  \dfrac{10 +  2 \sqrt{5} }{16} \\

\rm \:  {cos}18\degree =   \sqrt{ \dfrac{10 +  2 \sqrt{5} }{16}} \\

[ - ve sign rejected as cos18° > 0 ]

\rm\implies  \:  \: \boxed{\sf{  \:\:cos18\degree \:  =  \: \dfrac{ \sqrt{10 + 2 \sqrt{5} } }{4} \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:cos36\degree =  \frac{ \sqrt{5}  + 1}{4} \: }} \\

\boxed{\sf{  \:cos72\degree =  \frac{ \sqrt{5} -  1}{4} \: }} \\

\boxed{\sf{  \:sin72\degree =  \frac{ \sqrt{10  + 2 \sqrt{5} }}{4} \: }} \\

\boxed{\sf{  \:cos18\degree =  \frac{ \sqrt{10  + 2 \sqrt{5} }}{4} \: }} \\

\boxed{\sf{  \:cos54\degree =  \frac{ \sqrt{10 -  2 \sqrt{5} }}{4} \: }} \\

\boxed{\sf{  \:sin36\degree =  \frac{ \sqrt{10 -  2 \sqrt{5} }}{4} \: }} \\

Answered by maheshtalpada412
12

Step-by-step explanation:

 \color{red} \tt\[ \begin{array}{l} \text { \color{lime}\tiny \boxed{ \dfrac{ \nwarrow}{ \swarrow}  \dfrac{ \nearrow}{ \searrow}} } \text { since } \sin 18^{\circ}=\dfrac{\sqrt{5}-1}{4} \\  \\ \color{blue} \Rightarrow \cos ^{2} 18^{\circ}=1-\sin ^{2} 18^{\circ} \\  \\ \color{magenta} =1-\left[\dfrac{6-2 \sqrt{5}}{16}\right]=\dfrac{10+2 \sqrt{5}}{16} \\ \\ \color{olive}  \Rightarrow \cos 18^{\circ}=\pm \sqrt{\dfrac{10+2 \sqrt{5}}{16}} \end{array} \]

But 18^{\circ}lies in tex]\sf 1 ^{st}[/tex] quadrant.

Therefore \cos 18^{\circ} is positive

 \color{Turquoise} \tt\[ \Rightarrow \cos 18^{\circ}=\sqrt{\frac{10+2 \sqrt{5}}{16}}  \\  \color{palegreen} \qquad \qquad \:  \:  \:  \:  =\frac{\sqrt{10+2 \sqrt{5}}}{4} \]

Similar questions