Chemistry, asked by TheMahakals, 9 months ago

Prove the following using complex numbers.

\displaystyle \frac{\sin((2n+1)\theta)}{(2n+1)\sin(\theta)} = \prod_{r=1}^n \left( 1-\frac{\sin^2(\theta)}{\sin^2\left(\frac{r\pi}{(2n+1)}\right)}

Answers

Answered by Anonymous
0

Answer :

\begin{lgathered}\textsf{RHS} &\equiv \prod_{r=1}^n \left( 1-\frac{\sin^2(\theta)}{\sin^2\left(\frac{r\pi}{2n+1}\right)}\right)\\&=\frac{4^n}{m}\prod_{r=1}^n \left( \sin^2\left(r\phi\right)-\sin^2(\theta) \right) \qquad \text{Here: } \phi \equiv \frac{\pi}{2n+1} = \frac12\arg(\xi) \\ &=\frac{4^n}{m}\prod_{r=1}^n \left( \sin\left(r\phi - \theta \right) \sin\left(r\phi + \theta \right) \right) \\&=\frac{4^n}{m}\prod_{r=1}^n \left( \frac{(e^{i(r\phi - \theta)}-e^{-i(r\phi - \theta)})}{2i}\frac{(e^{i(r\phi +\theta)}-e^{-i(r\phi + \theta)})}{2i} \right) \\&=\color{orange}{\frac{4^n}{m}\frac{1}{(-4)^n}}\prod_{r=1}^n (w^r/z-z/w^r)(w^rz-w^{-r}/z) \qquad \text{Here: } w \equiv e^{i\phi}\,\,(w^2=\xi) \\&=\color{orange}{\frac{(-1)^n}{m}}\prod_{r=1}^n \left(\frac{\color{red}{-z}}{\color{red}{-z}}(w^{r}/z-z/w^r)\frac{\color{blue}{w^r}}{1}\right)\left(\frac{1}{\color{blue}{w^r}}(w^rz-w^{-r}/z)\frac{\color{green}{z}}{\color{green}{z}}\right) \\&=\frac{(-1)^n}{m}\prod_{r=1}^n \left(\frac{(-w^{2r}+z^2)}{\color{red}{-z}}\right)\left(\frac{(z^2-w^{-2r})}{\color{green}{z}}\right) \\&=\frac{(-1)^n}{m}(\color{red}{-z})^{-n}\color{green}{z}^{-n}\prod_{r=1}^n (z^2-\xi^2)\prod_{r=1}^n(z^2-\xi^{-2}) \\&=\frac{1}{\color{red}{z}^{n}\color{green}{z}^{n}m}\prod_{r=1}^n (u-\xi^r)\prod_{r=1}^n(u-\xi^{-r}) \\&=\frac{1}{u^nm}\prod_{r=1}^{m-1} (u-\xi^r)\\ &=\textsf{LHS}\end{lgathered}

Answered by BRAINLYADDICTOR
111

&lt;html&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>h1{</p><p></p><p>text-transform:uppercase;</p><p></p><p>margin-top:90px;</p><p></p><p>text-align:center;</p><p></p><p>font-family:Courier new,monospace;</p><p></p><p>border:3px solid rgb(60,45,8);</p><p></p><p>border-top:none;</p><p></p><p>width:67%;</p><p></p><p>letter-spacing:-6px;</p><p></p><p>box-sizing:border-box;</p><p></p><p>padding-right:5px;</p><p></p><p>border-radius:6px;</p><p></p><p>font-size:35px;</p><p></p><p>font-weight:bold;</p><p></p><p>}</p><p></p><p>h1 span{</p><p></p><p>position:relative;</p><p></p><p>display:inline-block;</p><p></p><p>margin-right:3px;</p><p></p><p>}</p><p></p><p>@keyframes shahir{</p><p></p><p>0%</p><p></p><p>{</p><p></p><p>transform: translateY(0px) rotate(0deg);</p><p></p><p>}</p><p></p><p>40%</p><p></p><p>{</p><p></p><p>transform: translateY(0px) rotate(0deg);</p><p></p><p>}</p><p></p><p>50%</p><p></p><p>{</p><p></p><p>transform: translateY(-50px)rotate(180deg);;</p><p></p><p>}</p><p></p><p>60%</p><p></p><p>{</p><p></p><p>transform: translateY(0px)rotate(360deg);;</p><p></p><p>}</p><p></p><p>100%</p><p></p><p>{</p><p></p><p>transform: translate(0px)rotate(360deg);;</p><p></p><p>}}</p><p></p><p>h1 span</p><p></p><p>{</p><p></p><p>animation: shahir 3s alternate infinite linear;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(1)</p><p></p><p>{color:red;</p><p></p><p>animation-delay: 0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(2)</p><p></p><p>{color:lightmaroon;</p><p></p><p>animation-delay: 0.2s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(3)</p><p></p><p>{color:orange;</p><p></p><p>animation-delay:0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(4)</p><p></p><p>{color:pink;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(5)</p><p></p><p>{color:lime;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(6)</p><p></p><p>{color:purple;</p><p></p><p>animation-delay: 0.3s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(7)</p><p></p><p>{color:blue;</p><p></p><p>animation-delay: 0.1s;</p><p>}</p><p></p><p>h1 span:nth-child(8)</p><p></p><p>{color:red;</p><p></p><p>animation-delay: 0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(9)</p><p></p><p>{color:lightmaroon;</p><p></p><p>animation-delay: 0.2s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(10)</p><p></p><p>{color:orange;</p><p></p><p>animation-delay:0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(11)</p><p></p><p>{color:pink;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(12)</p><p></p><p>{color:lime;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(13)</p><p></p><p>{color:purple;</p><p></p><p>animation-delay: 0.3s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(14)</p><p></p><p>{color:blue;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(15)</p><p></p><p>{color:yellow;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>} </p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;meta name="viewport" content="width=device-width" &gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;center&gt;</p><p></p><p>&lt;div&gt;</p><p></p><p>&lt;h1&gt;</p><p></p><p>&lt;span&gt;B&lt;/span&gt;</p><p></p><p>&lt;span&gt;R&lt;/span&gt;</p><p></p><p>&lt;span&gt;A&lt;/span&gt;</p><p></p><p>&lt;span&gt;I&lt;/span&gt;</p><p></p><p>&lt;span&gt;N&lt;/span&gt; </p><p></p><p>&lt;span&gt;L&lt;/span&gt;</p><p></p><p>&lt;span&gt;Y&lt;/span&gt; </p><p></p><p>&lt;span&gt;A&lt;/span&gt;</p><p></p><p>&lt;span&gt;D&lt;/span&gt;</p><p></p><p>&lt;span&gt;D&lt;/span&gt;</p><p></p><p>&lt;span&gt;I&lt;/span&gt;</p><p></p><p>&lt;span&gt;C&lt;/span&gt; </p><p></p><p>&lt;span&gt;T&lt;/span&gt;</p><p></p><p>&lt;span&gt;O&lt;/span&gt; </p><p></p><p>&lt;span&gt;R&lt;/span&gt;</p><p></p><p>&lt;/h1&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;/center&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;</p><p></p><p>

&lt;p style="color:purple;font-family:cursive;background:white;font-size:30px;"&gt;follow and thank my answers.&lt;/p&gt;

Attachments:
Similar questions