prove the following using the properties (a) x^(a-b) × x^(b-c) × x^(c-a) = 1
Answers
Answered by
0
Hey friend,
Here is the answer you were looking for :
{x}^{a - b} \times {x}^{b - c} \times {x}^{c - a} = 1xa−b×xb−c×xc−a=1
We know that,
{a}^{m} \times {a}^{n} = {a}^{m + n}am×an=am+n
\begin{gathered} {x}^{a - b + b - c + c - a} = 1 \\ \\ {x}^{0} = 1 \\ \end{gathered}xa−b+b−c+c−a=1x0=1
We know that anything with power 0 equals 1
1 = 11=1
Hence proved.
Hope this helps!!
pls mark me as branlist
Similar questions
Math,
25 days ago
Math,
25 days ago
History,
1 month ago
Computer Science,
1 month ago
Science,
9 months ago
History,
9 months ago
Computer Science,
9 months ago