Math, asked by madhav5245, 1 month ago

prove the following with complete explanation.

I can't understand from solution.

Please quality answer needed.

Attachments:

Answers

Answered by mathdude500
4

Given Question :-

 \sf \: If \:  {(1 + x)}^{n} = C_0 + C_1x + C_2 {x}^{2}  + C_3 {x}^{3} +  -  -  + C_n {x}^{n},

 \sf \: prove \: that \: C_1 + 2C_2 + 3C_3 +  -  -  + nC_n = n {2}^{n - 1}

 \purple{\large\underline{\sf{Solution-}}}

Given that

\rm :\longmapsto\: {(1 + x)}^{n} = C_0 + C_1x + C_2 {x}^{2}  + C_3 {x}^{3} +  -  -  + C_n {x}^{n}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}{(1 + x)}^{n} =\dfrac{d}{dx}\bigg[C_0 + C_1x + C_2 {x}^{2}  + C_3 {x}^{3} +  -  -  + C_n {x}^{n}\bigg]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx}k = 0 \: }} \\

So, using this identity, we get

\rm :\longmapsto\: {n(1 + x)}^{n - 1} = 0 + C_1 + C_2(2x) + C_3(3 {x}^{2}) +  -  -  + C_n( {nx}^{n - 1})

\rm :\longmapsto\: {n(1 + x)}^{n - 1} = C_1 + 2C_2x + 3C_3{x}^{2}+  -  -  + nC_n{x}^{n - 1}

Now, Substitute x = 1, we get

\rm :\longmapsto\: {n(1 + 1)}^{n - 1} = C_1 + 2C_2(1) + 3C_3{(1)}^{2}+  -  -  + nC_n{(1)}^{n - 1}

\rm :\longmapsto\: {n2}^{n - 1} = C_1 + 2C_2+ 3C_3+  -  -  + nC_n

Hence,

\rm \implies\:\boxed{ \tt{ \:  C_1 + 2C_2+ 3C_3+  -  -  + nC_n =  {n2}^{n - 1} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions