Math, asked by rahul556427, 10 months ago

Prove the following with the help of identities:

{}{ \bf \frac{ \sin(theta) + 1 -  \cos(theta)  }{ cos(theta) - 1 +  \sin(theta) }  =  \frac{1 +  \sin(theta) }{ \cos(theta) } }

Answers

Answered by ANGEL123401
8

AnswEr-

Consider LHS =

 \frac{ \sin(theta)  + 1 -  \cos(theta) }{ \cos(theta)  - 1 +  \sin(theta) }

Multiply and divide by {cos (theta)+1+sin(theta)}

 \frac{ \sin(theta )  + 1 -  \cos(theta) }{ \cos(theta) - 1 +  \sin(theta)  }  \times  \frac{ \cos(theta)  + 1 +  \sin(theta) }{ \cos(theta)  + 1 +  \sin(theta) }  \\

 =  \frac{(1 + sin(theta)){}^{2} -  {cos}^{2}  (theta)}{ (\ \sin(theta) +  cos(theta)) {}^{2}   - 1}

 =  \frac{1 +  { \sin }^{2} (theta) + 2 \sin(theta) {} - 1(1 -  \sin {}^{2} (theta)   }{ { \sin }^{2}theta +  \cos {}^{2} (theta) + 2 \cos(theta) sin(theta) - 1  }

 =  \frac{2 \sin(theta) (1 +  \sin(theta) }{2 \sin. \cos }

{}{{ =  \frac{1 +  \sin(theta) }{cos(theta)} }}

=RHS .

Thus proved.

Similar questions