prove the following (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Answers
Answered by
16
Step-by-step explanation:
Let x+y = A
So, (x+y+z)² becomes (A+z)²
But by identity , (a+b)² = a² + b² + 2ab
So,
(A+z)² = A² + z² + 2Az
Now substituting A = x + y in (A+z)² = A² + z² + 2Az
(x+y+z)² = (x+y)² + z² + 2*(x+y)*z
(x+y+z)² = (x+y)² + z² + 2xz + 2yz
But, (x+y)² = x² + y² + 2xy
So,
(x+y+z)² = x² + y² + 2xy + z² + 2xz + 2yz
Therefore ,
(x+y+z)² = x² + y² + z² + 2xy + 2xz +2zx
Pls mark Branliest ans
Answered by
13
Step-by-step explanation:
(x+y+z)² = (x+y+z)(x+y+z)
x(x+y+z)+y(x+y+z)+z(x+y+z)
x²+xy +xz +xy + y² +yz + xz +zy+ z²
= x²+y²+z²+2xy +2xz + 2zx l.h.s = r.h.s
hence proved.
hope it helps. plz mark brainliest
Similar questions