prove the folowing relation tan(45degree + A) .tan (45degree-A ) =1 give answer me step by step
Answers
Step-by-step explanation:
Given:-
Tan (45°+A) Tan (45°-A)
To find:-
Tan (45°+A) Tan (45°-1) = 1
Solution:-
Method-1:-
Given that
Tan (45°+A) Tan (45°-A)
Tan (45°+A) Tan (90-(45°+A)
We know that
Tan (90°-A) = Cot A
=> Tan (45°+A) Cot (45°+A)
We know that
Cot A = 1 / Tan A
=> Tan (45°+A) / Tan (45°+A)
=> 1
Method-2:-
Given that
Tan (45°+A) Tan (45°-A)
We know that
Tan (A+B) = (Tan A + Tan B )/ (1-Tan A Tan B)
And
Tan(A-B) = (Tan A- Tan B )/(1+Tan A Tan B)
We have A = 45° and B = A
=>[(Tan45° + Tan A )/ (1-Tan45° TanA)]×
[(Tan45°-Tan A)/(1+Tan 45° Tan A)]
We know that Tan 45°=1
=>[ (1+TanA)/(1-TanA)]×[(1-TanA)/(1+TanA)]
=> (1+TanA)(1-TanA)/(1-TanA)(1+TanA)
=>1
Method-3:-
Given that
Tan (45°+A) Tan (45°-A)
Tan (90°-(45°-A) Tan(45°-A)
We know that
Tan (90°-A) = Cot A
=> Tan (45°-A) Cot (45°-A)
We know that
Cot A = 1 / Tan A
=> Tan (45°-A) / Tan (45°-A)
=> 1
Answer:-
Tan (45°+A) Tan (45°-1) = 1
Used formulae:-
Tan (90°-A) = Cot A
Tan (A+B) = (Tan A + Tan B )/ (1-Tan A Tan B)
Tan(A-B) = (Tan A- Tan B )/(1+Tan A Tan B)