Math, asked by maojmani21, 4 months ago

prove the given differencial equation ​

Attachments:

Answers

Answered by Seafairy
122

{\large{\underline{\underline{\textbf{Given :}}}}}

y=(x+\sqrt{1+x^2})^m

{\large{\underline{\underline{\textbf{To Prove :}}}}}

(1+x^2)y_2+xy_1-m^2y=0

{\large{\underline{\underline{\textbf{Solution :}}}}}

\implies (1+x^2)y_2+xy_1-m^2y=0

Solve by inserting chain rule

\frac{dy}{dx}=\frac{dy}{dt}\times \frac{dt}{dx}

t=x+\sqrt{1+x^2}\:\:\:,\:\: y=t^m

\frac{dy}{dt}=mt^{m-1}\:\:\: ;\:\:\: \frac{dt}{dx}=1+\frac{x}{(1+x)^{\frac{1}{2}}}

y_1 = \frac{dy}{dx}=m(x+\sqrt{1+x^2})^{m-1}(1+\frac{x}{\sqrt{1+x^2}})

= m(x+\sqrt{1+x^2})^{m-1}(\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}}

= \frac{m}{\sqrt{1+x^2}}\times (x+\sqrt{1+x^2})^{m-1+1}

\implies y_1=\frac{my}{\sqrt{1+x^2}}

\textbf{squaring on both sides},

{y_1}^2 (1+x^2)=m^2y^2

\textbf{differentiating both sides},

2y_1 \frac{dy_1}{dx}(1+x^2)+{y_1}^2(2x)=m^22y.\frac{dy}{dx}

2y_1\frac{d}{dx}(\frac{dy}{dx})(1+x^2)+{y_1}^22x =m^22yy_1

2y_1y_2(1+x^2)+{y_1}^22x=m^22yy_1=0

\textbf{div 2y by both sides},

y_2(1+x^2)+xy_1-m^2y=0

\textbf{Hence proved}.


Anonymous: Awesome !!
Seafairy: thank you :)♡
Anonymous: wello :)
Seafairy: :)
Anonymous: :)
Similar questions