Math, asked by HimanshuRaj012, 1 year ago

prove the given equation..

Attachments:

Answers

Answered by STR9
1
This answer might help you
Attachments:
Answered by sushant2505
3
Hi...☺

Here is your answer...✌

Given that,

a = x {y}^{p - 1} \:  ,\: b = x {y}^{q - 1}  \: , \: c = x {y}^{r - 1}

To Prove :

 {a}^{q - r}   \: {b}^{r - p} \:   {c}^{p - q}  = 1

Proof :

LHS

 = {a}^{q - r}   \: {b}^{r - p} \:   {c}^{p - q}  \\  \\  =  {(x {y}^{p - 1} )}^{q - r }  \: {(x {y}^{q - 1} )}^{r - p}  \: {(x {y}^{r - 1} )}^{p - q}  \\  \\  =  {x}^{q - r}  {y}^{(p - 1)(q - r)}  \: {x}^{  r - p}  {y}^{(q - 1)(r - p)} \:  {x}^{p - q }  {y}^{(r - 1)(p - q )}  \\  \\  =  {x}^{q - r + r - p + p - q}   \: {y}^{(p - 1)(q - r) + (q - 1)(r - p) + (r -1 ) (p - q)}  \\  \\  =  {x}^{0} \:   {y}^{pq - pr - q + r + qr - pq - r + p + pr - qr - p + q}  \\  \\  = 1 \times  {y}^{0}  = 1  \times 1 \\  \\   = 1

= RHS [ Proved ]
Similar questions