Math, asked by krish0345, 5 months ago

prove the given equationx^2(p^2+q^2)+2x(pr+qs)+r^2+s^2=0 has no real roots. If ps=qr, , then show that the roots are real and equal.

Answers

Answered by Anonymous
35

The given Quadratic equation is,

x^2(p^2+q^2)+2x(pr+qs)+r^2+s^2=0

Here, a=p^2+q^2,b=2(pr+qs) ,c=r^2+s^2

Now,

Δ= b^2-4ac=[2(pr+qs)]^2-4(p^2+q^2)(r^2+s^2)

Δ= b^2-4ac=4[p^2r^2+2pqrs+q^2s^2-p^2r^2-p^2s^2-q^2r^2-q^2s^2]

Δ = b^2-4ac=4[-p^2s^2+2pqrs-q^2r^2]

Δ= -4[(ps-qr)^2]<0\:  ...(1)

Since, Δ = b^2-4ac<0, the roots are not real.

If ps=qr then Δ= -4[ps-qr]^2 = -4[qr-qr]^2<0 \:\:\:  (using(1))

Thus, Δ = 0 if ps=qr and so the roots will be real and equal.

                                                                                                                                                 

Similar questions