prove the given Identity of multiple of trigonometry
Answers
Given to prove that :-
sin5A = 16sin⁵A - 20sin³A + 5sinA
Formulae used :-
sin(x +y) = sinx cosy + siny cosx
sin3x = 3sinx - 4 sin³A
cos3x = 4 cos³x - 3cosx
sin2x = 2sinx cosx
cos2x = 1 - 2sin²x [in terms of sin]
cos²A = 1- sin²A
By using these formulae we shall prove it
------------------------------------------------------------------------
sin5A can be written as sin(3A+2A) in order to get in form of sin(A+ B) So, expanding the sin5A according to the formula
sin(3A + 2A) = sin3A cos2A + sin2A cos3A
= (3 sinA - 4sin³A) (1 -2 sin²A) + (2sinA cosA)(4cos³A- 3cosA)
Multiplying the terms
3sinA (1 - 2sin²A) - 4sin³A(1 -2sin²A) + 2sinAcosA (4cos³A - 3 cosA)
3sinA - 6sin³A - 4sin³A + 8 sin⁵A + 8sinA cos⁴A - 6 sinA cos²A
Converting all "cos" terms into" sin" terms In order to get the R.H. S
3sinA - 10sin³A + 8sin⁵A + 8sinA (1-sin²A)² - 6 sinA (1 - sin²A)
Here cos²A can be written in terms of sin are (1-cos²A) i.e from
sin²A + cos²A = 1
sin²A = 1-cos²A
Expanding (1-sin²A) by using (a-b)² formula = a²-2ab + b²
3sinA - 10sin³A + 8sin⁵A + 8sinA( 1 + sin⁴A - 2sin²A) -6sinA + 6sin³A
3sinA - 10sin³A + 8sin⁵A + 8sinA + 8sin⁵A - 16 sin³A - 6sinA + 6sin³A
Keeping all like powers together
8sin⁵A + 8sin⁵A - 10sin³A - 16sin³A + 6sin³A + 3sinA + 8sinA - 6 sinA
16sin⁵A - 20sin³A + 5sinA
Hence ,
sin(3A + 2A) = 16sin⁵A - 20sin³A + 5sinA
sin5A = 16sin⁵A - 20sin³A + 5sinA
Hence proved!
Note :- Instead of theta Here I replaced with letter "A"