prove the given Identity of trigonometry
Answers
EXPLANATION.
⇒ sin5θ = 16sin⁵θ - 20sin³θ + 5sinθ.
As we know that,
From L.H.S We get,
⇒ sin5θ = sin(3θ + 2θ).
As we know that,
Formula of :
⇒ sin(A + B) = sin(A).cos(B) + cos(A).sin(B).
Using this formula in the equation, we get.
⇒ sin3θ.cos2θ + cos3θ.sin2θ.
As we know that,
Formula of :
⇒ sin3θ = 3sinθ - 4sin³θ.
⇒ cos3θ = 4cos³θ - 3cosθ.
⇒ sin2θ = 2sinθ.cosθ.
⇒ cos2θ = 1 - 2sin²θ.
⇒ sin²θ + cos²θ = 1.
Using this formula in the equation, we get.
⇒ (3sinθ - 4sin³θ)(1 - 2sin²θ) + (4cos³θ - 3cosθ)(2sinθ.cosθ).
⇒ 3sinθ - 6sin³θ - 4sin³θ + 8sin⁵θ + (4cos³θ - 3cosθ)(cosθ)(2sinθ).
⇒ 3sinθ - 10sin³θ + 8sin⁵θ + (4cos⁴θ - 3cos²θ)(2sinθ).
⇒ 3sinθ - 10sin³θ + 8sin⁵θ + cos²θ(4cos²θ - 3)(2sinθ).
⇒ 3sinθ - 10sin³θ + 8sin⁵θ + (1 - sin²θ)[4(1 - sin²θ) - 3](2sinθ).
⇒ 3sinθ - 10sin³θ + 8sin⁵θ + (1 - sin²θ)[4 - 4sin²θ - 3](2sinθ).
⇒ 3sinθ - 10sin³θ + 8sin⁵θ + (1 - sin²θ)[1 - 4sin²θ)(2sinθ).
⇒ 3sinθ - 10sin³θ + 8sin⁵θ + (2sinθ - 2sin³θ)(1 - 4sin²θ).
⇒ 3sinθ - 10sin³θ + 8sin⁵θ + (2sinθ - 8sin³θ - 2sin³θ + 8sin⁵θ).
⇒ 3sinθ - 10sin³θ + 8sin⁵θ + 2sinθ - 10sin³θ + 8sin⁵θ.
⇒ 3sinθ + 2sinθ - 10sin³θ - 10sin³θ + 8sin⁵θ + 8sin⁵θ.
⇒ 16sin⁵θ - 20sin³θ + 5sinθ.
Hence Proved.