Math, asked by Xennial, 1 day ago

Prove the given identity :
(The angles involved are acute angles )
( \cosec θ- cotθ) ^{2}  =  \frac{1 -  \cosθ}{1 +  \cosθ}

Answers

Answered by Aryan0123
100

Question:

Prove the given identity:

\sf{(cosec \theta - cot \theta)^{2}=\dfrac{1-cos \theta}{1+cos \theta}}\\\\

\\

Procedure:

  • First, we will convert the cosec θ and cot θ in the RHS to sin θ and cos θ.
  • This step is done because there is only cos θ on RHS and not cosec θ or cot θ.

\\

Solution:

Taking LHS,

\sf{(cosec \theta - cot \theta)^{2}}\\\\

:\implies \: \sf{\bigg(\dfrac{1}{sin \theta}-\dfrac{cos \theta}{sin \theta}\bigg)^{2}}\\\\

\longrightarrow \: \: \sf{\bigg(\dfrac{1-cos \theta}{sin \theta}\bigg)^{2}}\\\\

\longrightarrow \: \: \sf{\dfrac{(1-cos \theta)^{2}}{(sin \theta)^{2}}}\\\\

\hookrightarrow \: \: \sf{\dfrac{(1-cos \theta)^{2}}{sin^{2}\theta}}\\\\

\\

sin²θ can also be written as (1 - cos²θ)

\\

\implies \: \sf{\dfrac{(1-cos \theta)(1-cos \theta)}{(1-cos^{2}\theta)}}\\\\

\\

Using the identity (a + b) (a - b) = a² - b²,

\\

\implies \: \sf{\dfrac{(1-cos \theta)(1-cos \theta)}{(1-cos\theta)(1+cos \theta)}}\\\\

\implies \: \sf{\dfrac{\cancel{(1-cos \theta)}(1-cos \theta)}{\cancel{(1-cos\theta)}(1+cos \theta)}}\\\\

\leadsto \: \: \sf{\dfrac{1-cos \theta}{1+cos \theta}}\\\\

\therefore \: \boxed{\bf{(cosec \theta - cot \theta)^{2}=\dfrac{1-cos \theta}{1+cos \theta}}}\\\\

Answered by llMsWinell
41

Answer:-

LHS = (cosecθ - cotθ)²

=  {( \frac{1}{sinθ} -  \frac{ \cosθ }{ \sinθ} ) }^{2}

 =  { \frac{(1 -  \cosθ)}{1 -  \cosθ} }^{2}  =  \frac{1 - \cos  θ}{1 +  \cosθ }

= RHS

Similar questions