Math, asked by chinmaydpatil0pdgpam, 11 months ago

prove the given ...
immediately​

Attachments:

Answers

Answered by amitkumar44481
63

To Proof :

 \tt\dagger \frac{1}{ \csc \theta -  \cot \theta }  -  \frac{1}{ \sin \theta}  =  \frac{1}{ \sin \theta}  - \frac{1}{ \csc \theta  +  \cot \theta }

Proof :

Let's proof LHS and RHS simultaneously,

 \tt\mapsto \frac{1}{ \csc \theta -  \cot \theta }  -  \frac{1}{ \sin \theta}  =  \frac{1}{ \sin \theta}  - \frac{1}{ \csc \theta  +  \cot \theta }

 \tt\mapsto  \frac{1}{ \csc \theta -  \cot \theta }   + \frac{1}{ \csc \theta  +  \cot \theta }  =  \frac{1}{ \sin \theta}   + \frac{1}{ \sin \theta}

 \tt\mapsto \frac{ \csc \theta +  \cot \theta +  \csc \theta -  \cot \theta}{ (\csc \theta  +  \cot \theta)  (\csc \theta   -   \cot \theta) }  =  \frac{2}{ \sin \theta}

\tt\mapsto  \frac{2 \csc \theta}{ { \csc}^{2}  \theta -  { \cot}^{2} \theta }  =  \frac{2}{ \sin \theta}

\tt\mapsto \frac{ \csc \theta}{1}  =  \frac{1}{ \sin \theta}

\tt\mapsto  \csc \theta =  \csc \theta.

Hence, LHS = RHS.

\rule{190}2

\boxed{\begin{minipage}{7 cm} Required Formula \\ \\$\sin^2\theta + \cos^2\theta=1 \\ \\  1+\tan^2\theta = \sec^2\theta \\ \\ 1+\cot^2\theta = {csc}^2 \theta \\ \\ (a + b)(a-b) = a^{2} - b^{2} \\ \\ \frac{1}{\sin\theta}= \csc \theta $\end{minipage}}

Attachments:
Similar questions