Math, asked by Anonymous, 2 months ago

Prove the given trigonometry identity :-
√(1 + sin A/1 – sin A) = sec A + tan A
No Copy or Spam

Answers

Answered by Thatsomeone
37

 \tt To\:prove \: : \sqrt{\frac{1+sinA}{1-sinA}} = secA + tanA\\ \\ \tt L.H.S \\ \\ \tt \implies \sqrt{\frac{1+sinA}{1-sinA}} \\ \\ \tt Dividing\:and\: multiplying\:by (1+sinA) \\ \\ \tt \implies \sqrt{\frac{(1+sinA)(1+sinA)}{(1+sinA)(1-sinA)}} \\ \\ \tt \implies \sqrt{\frac{{(1+sinA)}^{2}}{1-{sin}^{2}A}} \\ \\ \tt \implies \sqrt{\frac{{(1+sinA)}^{2}}{{cos}^{2}A}} \\ \\ \tt \implies \frac{1+sinA}{cosA} \\ \\ \tt \implies \frac{1}{cosA} + \frac{sinA}{cosA} \\ \\ \tt \implies secA + tanA \\ \\ \tt secA+ tanA \\ \\ \tt \implies R.H.S \\ \\ \underline{\red{\tt Hence\:proved}}  \large{\purple{\mathfrak{Formulas\:and\: identities}}} \\ \\  \orange{\mathbb{ IDENTITIES }} \\ \\ \tt   \circ \:\: {sin}^{2}\theta + {cos}^{2}\theta = 1 \\ \tt \circ \:\: 1+{tan}^{2}\theta = {sec}^{2}\theta \\ \tt \circ \:\: 1 + {cot}^{2}\theta = {cosec}^{2}\theta \\ \\  \orange{\mathbb{ DOUBLE\:ANGLE\:FORMULAS}} \\ \\ \tt \circ \:\: sin2\theta = 2sin\theta cos\theta \\ \tt \circ \:\: cos2\theta = {cos}^{2}\theta - {sin}^{2}\theta \\ \tt \circ \:\: tan2\theta = \frac{2tan\theta}{1-{tan}^{2}\theta} \\ \\ \orange{\mathbb{TRIPLE\:ANGLE\:FORMULAS}} \\ \\ \tt \circ \:\: sin3\theta = 3sin\theta - 4{sin}^{3}\theta \\ \tt \circ \:\: cos3\theta = 4{cos}^{3}\theta - 3cos\theta \\ \tt \circ \:\: tan3\theta = \frac{3tan\theta - {tan}^{3}\theta}{1-3{tan}^{2}\theta} \\ \\ \orange{\mathbb{GENERAL\: TRANSFORMATIONS}} \\ \\ \tt \circ \:\: cosec\theta = \frac{1}{sin\theta} \\ \tt \circ \:\: sec\theta = \frac{1}{cos\theta} \\ \tt \circ \:\: cot\theta = \frac{1}{tan\theta}

Answered by OtakuSama
27

Question:-

Prove the given trigonometry identity :-

√(1 + sin A/1 – sin A) = sec A + tan A

Required Answer:-

Given:-

\\\sf{Prove \: that: { \sqrt{ \dfrac{1  +  sinA}{1  - sinA }} = secA + tanA}}\\\\

Identity used:-

 \\ \sf{\rightarrow{1 -  {sin}^{2}\theta =  {cos}^{2} \theta}}

\sf{\rightarrow{(a + b)(a - b) =  {a}^{2}  -  {b}^{2}}} \\\\

Solution:-

L.H.S.:-

\\\sf{\bold{ \sqrt{ \dfrac{1  +  sinA}{1  - sinA }}}}

Rationalising the denominator we get:-

 \\ \sf{\implies{ \sqrt{ \dfrac{(1 + sinA)(1  +  sinA)}{((1 - sinA)(1 + sinA)}}} }

 \\ \sf{\implies{ \sqrt{ \frac{ {(1 + sinA)}^{2} }{ {1}^{2} -  {sin}^{2}A }}}}

 \\ \sf{\implies{ \sqrt{ \dfrac{ {(1 + sinA)}^{2}  }{ {cos}^{2}A }}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\rm{\because{ {1 -  {sin}^{2}\theta =  {cos}^{2} \theta}}}}

 \\ \sf{\implies{ \dfrac{1  +  sinA}{cosA}}}

 \\ \sf{\implies{ \dfrac{1}{cosA}   +  \dfrac{sinA}{cosA}}}

Now, applying 1/cosA=secA and sinA/cosA=tanA we get:-

 \\ \sf{\implies{\red{secA + tanA}}}

=> R.H.S.

We observe that L.H.S. = R.H.S.

Hence, proved!

Some Important Identities:-

 \\ \sf{\rightarrow{ {sin}^{2} \theta +  {cos}^{2} \theta = 1}} \\  \\ \sf{\rightarrow{ {sec}^{2}\theta = 1 +  {tan}^{2} \theta}}  \\  \\ \sf{\rightarrow{ {cosec}^{2} \theta = 1 +  {cot}^{2}\theta}}

Similar questions