Prove the identify
(sec A - cos A) · (cot A + tan A) = tanA · sec A
Answers
Answered by
14
Step-by-step explanation:
Given:
- (sec A - cos A) · (cot A + tan A) = tanA · sec A
To Prove:
- LHS = RHS
Proof: Taking LHS first.
➮ (sec A - cos A) × (cot A + tan A)
➮ (1/cos A – cos A) (cos A/sin A + sin A/cos A)
➮ ( 1 – cos² A/cos A) (cos² A + sin² A/sinA cos A)
➮ sin² A/cos A × 1/sin A cos A
➮ sin A/cos A × 1/cos A
➮ tan A × sec A
Hence, LHS = RHS proved.
★ Identities used here ★
- sec θ = 1/cosθ
- cot θ = cosθ/sinθ
- tan θ = sinθ/cosθ
- sin² θ = 1 – cos²θ
- cos²θ + sin²θ = 1
Answered by
13
To Prove:
Proof:
LHS
RHS
Similar questions