Math, asked by vaishnavigadge78, 7 months ago

Prove the identify

(sec A - cos A) · (cot A + tan A) = tanA · sec A​

Answers

Answered by pandaXop
14

Step-by-step explanation:

Given:

  • (sec A - cos A) · (cot A + tan A) = tanA · sec A

To Prove:

  • LHS = RHS

Proof: Taking LHS first.

➮ (sec A - cos A) × (cot A + tan A)

➮ (1/cos A – cos A) (cos A/sin A + sin A/cos A)

➮ ( 1 – cos² A/cos A) (cos² A + sin² A/sinA cos A)

➮ sin² A/cos A × 1/sin A cos A

➮ sin A/cos A × 1/cos A

➮ tan A × sec A

Hence, LHS = RHS proved.

Identities used here

  • sec θ = 1/cosθ

  • cot θ = cosθ/sinθ

  • tan θ = sinθ/cosθ

  • sin² θ = 1 – cos²θ

  • cos²θ + sin²θ = 1
Answered by Anonymous
13

To Prove:

\bull\sf{(sec A - cos A) · (cot A + tan A) = tanA · sec A}

Proof:

LHS

 \leadsto \sf \: (secA - cosA).(cotA + tanA) \: \green\bigstar\\  \\  \leadsto \sf \: ( \frac{1}{cosA}  - cosA).( \frac{cosA}{sinA}  +  \frac{sinA}{cosA} ) \\  \\  \leadsto \sf \: ( \frac{1 - cos {}^{2}A }{cosA} ).( \frac{cos {}^{2}A + sin {  }^{2} A }{sinA.cosA} ) \\  \\  \leadsto \sf \: ( \frac{sin {}^{ \cancel{2}}A }{cosA} ).( \frac{1}{ \cancel{sinA}.cosA} ) \\  \\  \leadsto \sf \: ( \frac{sinA}{cosA} ).( \frac{1}{cosA} ) \\  \\  \leadsto \sf \: tanA.secA  \: \red \bigstar

RHS

Similar questions