Math, asked by dardeepchahal28282, 3 months ago

prove the identify sin³+cos³/sin cos =1-sin cos​

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

 \sf \: Prove  \: that \: \dfrac{ {sin}^{3}x +  {cos}^{3} x }{sinx + cosx}  = 1 - sinxcosx

\large\underline{\sf{Solution-}}

Basic Identities Used :-

 \boxed{ \bf{ \:  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}  - xy)}}

 \boxed{ \bf{ \: \: {sin}^{2} x +  {cos}^{2} x = 1}}

Let's solve the problem now!!

Consider,

\rm :\longmapsto\:\dfrac{ {sin}^{3}x +  {cos}^{3} x }{sinx + cosx}

\rm :\longmapsto\: =  \: \dfrac{ \cancel{ (sinx + cosx)}({sin}^{2}x +  {cos}^{2} x - sinx \: cosx) } {\cancel{sinx + cosx}}

\rm :\longmapsto\: =  \: 1 - sinxcosx

{\boxed{\boxed{\bf{Hence, Proved}}}}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions