Math, asked by sourya1794, 11 months ago

Prove the identities:

√[1+sinA/1-sinA] = sec A + tan A


❋❋Aagan me hoti to hm gira v dete kambhakt insano ne diwar Dil me bna rakhi hai !!!!!​

Answers

Answered by Rajshuklakld
6

LHS=[1+sinA/1-SinA]^1/2

multiply with 1+SinA on both numerator and denominator

LHS=[(1+sinA)(1+SInA)/(1-sinA)(1+sinA)]^1/2

LHS=[(1+SinA)^2/cos^2]^1/2

LHS=(1+sinA)/cosA

LHS=1/cosA +(1/sinA)

LHS=secA+TanA

Answered by amitkumar44481
24

To Prove :

 \tt \sqrt{ \frac{1 +  \sin A}{1 -  \sin A} }  =  \sec A +  \tan A. \\

Concepts Required :

  • (a + b )( a+ b) = (a + b)².
  • 1/ Cos theta = Sec theta.
  • Sin theta / Cos theta = tan theta.
  • Sin² theta + Cos² theta = 1.
  • 1+ tan² theta = Sec² theta.

Proof :

Taking LHS,

 \tt  \dashrightarrow\sqrt{ \frac{1 +  \sin A}{1 -  \sin A} }  \\

 \tt \dashrightarrow\sqrt{ \frac{1 +  \sin A}{1 -  \sin A} }   \times  \sqrt{ \frac{1 +  \sin A}{1  +   \sin A} }  \\

 \tt  \dashrightarrow\sqrt{ \frac{{(1 +  \sin A) }^{2} }{1 -  {\sin }^{2}  A} }   \\

 \tt  \dashrightarrow\sqrt{ \frac{{(1 +  \sin A) }^{2} }{{\cos }^{2}  A} }   \\

Now, Remove Root by square.

 \tt  \dashrightarrow    \frac{1 +  \sin A}{ \cos A }  \\

Or, We can also write as.

 \tt  \dashrightarrow    \frac{1 }{ \cos A }   +  \frac{ \sin A}{ \cos A }  \\

\tt  \dashrightarrow \sec A  +  \tan A. \\

Hance Proved.

Similar questions