Prove the identities:
√[1+sinA/1-sinA] = sec A + tan A
❋❋Aagan me hoti to hm gira v dete kambhakt insano ne diwar Dil me bna rakhi hai !!!!!
Answers
Answered by
6
LHS=[1+sinA/1-SinA]^1/2
multiply with 1+SinA on both numerator and denominator
LHS=[(1+sinA)(1+SInA)/(1-sinA)(1+sinA)]^1/2
LHS=[(1+SinA)^2/cos^2]^1/2
LHS=(1+sinA)/cosA
LHS=1/cosA +(1/sinA)
LHS=secA+TanA
Answered by
24
To Prove :
Concepts Required :
- (a + b )( a+ b) = (a + b)².
- 1/ Cos theta = Sec theta.
- Sin theta / Cos theta = tan theta.
- Sin² theta + Cos² theta = 1.
- 1+ tan² theta = Sec² theta.
Proof :
Taking LHS,
Now, Remove Root by square.
Or, We can also write as.
Hance Proved.
Similar questions