Math, asked by kiyonadriver, 8 months ago

prove the identities.....​

Attachments:

Answers

Answered by sara0533
4

I hope it helps you!!!!!

follow me

Attachments:
Answered by Anonymous
30

\huge\tt{\red{Given:}}

\dfrac{cosA}{1-tanA}+\dfrac{sinA}{1-cotA} = sinA + cosA

\huge\tt{\red{To \:Prove :}}

★LHS = RHS

\huge\tt{\red{Proof:}}

LHS=

\dfrac{cosA}{1-tanA}+\dfrac{sinA}{1-cotA}

=\dfrac{cosA}{1-\dfrac{sinA}{cosA}}+\dfrac{sinA}{\dfrac{cosA}{sinA}}

\large\red{\boxed{tan\theta=\dfrac{sin\theta}{cos\theta}\:\: cot\theta=\dfrac{cos\theta}{sin\theta}}}

=\dfrac{cosA}{\dfrac{cosA-sinA}{cosA}}+\dfrac{sinA}{\dfrac{sinA-cosA}{sinA}}

=\dfrac{cos^{2}A}{cosA-sinA}+\dfrac{sin^{2}A}{sinA-cosA}

=\dfrac{(-1) cos^{2}A}{(-1) (cosA-sinA) }+\dfrac{sin^{2}A}{sinA-cosA}

=\dfrac{- cos^{2}A}{- cosA+sinAA) }+\dfrac{sin^{2}A}{sinA-cosA}

=\dfrac{sin^{2}A-cos^{2}A}{cosA-sinA}

\large\green{\boxed{a^{2}-b^{2}=(a+b) (a-b)}}

=\dfrac{(sinA+cosA) (\cancel{sinA-cosA}) }{\cancel{sinA-cosA}}

=sinA+cosA

= RHS

Hence Proved.

Now, refer to attachment

Attachments:
Similar questions