Prove the identities.
Attachments:
Answers
Answered by
2
(1)LHS:- 2sec2A- sec4A -2 cosec2A +cosec4A
= 2sec2A - 2cosec2A +cosec4A -sec4A
= 2(1 +tan2A) - 2(1+cot2A) +(1 + cot2A)2 - (1+tan2A)2
= 2 +2tan2A - 2 -2cot2A +1 +cot4A +2cot2A - (1 +tan4A +2tan2A)
= 2tan2A - 2cot2A +1 +cot4A +2 cot2A - 1 -tan4A - 2tan2A
= cot4A - tan4A
= RHS
Hence, proved.
(2)L.H.S=(1+cota- coseca)(1+ tana +seca)
={1+(cos a / sin a) -(1/sin a )} {1 + (sin a / cos a ) + (1/cos a)}
={(sin a + cos a - 1) / sin a } {(sin a +cos a +1) / cos a }
=(1/sin a . cos a ) { (sin a +cos a )^2 - 1}
=(1/ sin a . cos a ) { 1 +2 sin a .cos a -1}
=(1/ sin a . cos a) * (2 sin a . cos a )
=2
=R.H.S
= 2sec2A - 2cosec2A +cosec4A -sec4A
= 2(1 +tan2A) - 2(1+cot2A) +(1 + cot2A)2 - (1+tan2A)2
= 2 +2tan2A - 2 -2cot2A +1 +cot4A +2cot2A - (1 +tan4A +2tan2A)
= 2tan2A - 2cot2A +1 +cot4A +2 cot2A - 1 -tan4A - 2tan2A
= cot4A - tan4A
= RHS
Hence, proved.
(2)L.H.S=(1+cota- coseca)(1+ tana +seca)
={1+(cos a / sin a) -(1/sin a )} {1 + (sin a / cos a ) + (1/cos a)}
={(sin a + cos a - 1) / sin a } {(sin a +cos a +1) / cos a }
=(1/sin a . cos a ) { (sin a +cos a )^2 - 1}
=(1/ sin a . cos a ) { 1 +2 sin a .cos a -1}
=(1/ sin a . cos a) * (2 sin a . cos a )
=2
=R.H.S
Anonymous:
thanks
Similar questions