Math, asked by vilasmahalle025, 7 months ago

Prove the identities:
cosec A - cot A = sin A ÷ 1 + cos A​

Answers

Answered by sksastry55548
1

Answer:

this is the answer of this question

Attachments:
Answered by bhattak9617
1

Taking \: LHS

cosec \: A \:  -  \: cot \: A \\ \\   \frac{1}{sin \:A}  -  \frac{cos \:A}{sin \:A} \\ \\   \frac{1 - cos \: A}{sin \: A} \\  \\   \frac{1 - cos \: A}{sin \: A} \times  \frac{1 + cos \: A}{1 + cos \:  A } \\ \\   (\frac{1 + cos \: A}{1 + cos \:  A } \: is \: nothing \: but \: 1) \\  \\  \frac{1  - cos {}^{2} A}{sin \:  A (1 + cos \:  A)}  \\ \\   \frac{ 1 - (1 - sin {}^{2} A)}{sin \:  A (1 + cos \:  A)} \\  \\  \frac{ 1 - 1 + sin {}^{2} A}{sin \:  A (1 + cos \:  A)} \\  \\  \frac{ sin {}^{2} A}{sin \:  A (1 + cos \:  A)} \\  \\ \frac{sin \: A}{1 + cos \:  A }

HENCE   \:  \:  \: PROVED \:  \: !!!

Similar questions