Prove the identities:
(i) √[1+sinA/1-sinA] = sec A + tan A
(ii) (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A
Answers
Answer:
Step-by-step explanation:
Question (1) :-
- Prove :- √[1+sinA/1-sinA] = sec A + tan A
Solution :-
Taking LHS
→ √[1+sinA/1-sinA]
Rationalizing The Denominator we get,
→ √[(1+sinA)/(1-sinA) * (1+sinA)/(1+sinA) ]
→ √[(1 + sinA)² / (1 - sin²A) ]
Now, using 1 - sin²A = cos²A in Denominator ,
→ √[(1 + sinA)² / (cos²A) ]
Square root Now,
→ ( 1+ sinA) / (cosA)
→ (1/cosA) + (sinA/cosA)
Now, using (1/cosA) = secA & (sinA/cosA) = tanA, we get,
→ secA + tanA . = RHS = Proved .
_________________________
Question (2) :-
- Prove :- (1+tan²A/1+cot²A) = (1-tanA/1-cotA)² = tan²A
Solution :-
Taking LHS first :-
→ (1+tan²A)/(1+cot²A)
Putting tanA = (sinA/cosA) & cotA = (cosA/sinA) we get,
→ [ { 1+(sin²A/cos²A) } / { 1 + (cos²A/sin²A) } ]
Taking LCM ,
→ [ (cos²A+sin²A)/cos²A) / (sin²A+cos²A)/sin²A ]
using (sin²A+cos²A) = 1 now,
→ (1/cos²A) / (1/sin²A)
→ (1/cos²A) * (sin²A/1)
→ (sin²A/cos²A)
→ tan²A
Now, Solving MHS :-
→ [ (1 - tanA) / (1 - cotA) ]²
using (a - b)² = a² + b² - 2ab in N & D both,
→ (1+tan²A - 2tanA) / (1+cot² - 2cotA)
putting (1+tan²A) = sec²A & (1+cot²A) = cosec²A now,
→ (sec²A - 2tanA)/(cosec²A - 2cosA/sinA)
Putting tanA = (sinA/cosA) & cotA = (cosA/sinA) we get,
→ [{sec²A - 2*(sinA/cos A)} / {(cosec²A - (2cosA/sinA)}]
putting sec²A = (1/cos²A) & cosec²A = (1/sin²A) now,
→ [ {(1/cos²A) - 2(sinA/cosA)} / { (1/sin²A) - 2(cosA/sinA) }]
→ [(1 - 2sinAcosA)/cos²A] / [(1 - 2cosAsinA)sin²A]
→ [ { (1 - 2sinAcosA)/cos²A } * {sin²A/(1 - 2sinAcosA) } ]
→ (sin²A/cos²A)
→ tan²A