prove the identities pls,,,,,,,
Attachments:
JAISAL:
Which one
Answers
Answered by
7
Answer :
{ Making the corrections, solutions are added }
1)
Now, sin(60° + A) sinA sin(60° - A)
= (sin60° cosA + cos60° sinA) (sin60° cosA - cos60° sinA) sinA
= (sin²60° cos²A - cos²60° sin²A) sinA
= ( cos²A - sin²A) sinA
= (3 cos²A - sin²A) sinA
= (3 - 3 sin²A - sin²A) sinA
= (3 sinA - 4 sin³A)
= sin3A
2)
Now, cos(60° - A) cosA cos(60° + A)
= {cos(60° - A) cos(60° + A)} cosA
= (cos60° cosA + sin60° sinA) (cos60° cosA - sin60° sinA) cosA
= (cos²60° cos²A - sin²60° sin²A) cosA
= ( cos²A - sin²A) cosA
= (cos²A - 3 sin²A) cosA
= (cos²A - 3 + 3 cos²A) cosA
= (4 cos³A - 3 cosA)
= cos3A
Hence, proved.
3)
Now, tan(60° + A) tanA tan(60° - A)
Hence, proved.
#MarkAsBrainliest
Answered by
2
1. sin(a)sin(60 - a)sin(60 + a) =>
sin(a) * (sin(60)cos(a) - sin(a)cos(60)) * (sin(60)cos(a) + sin(a)cos(60)) =>
sin(a) * (sin(60)^2 * cos(a)^2 - sin(a)^2 * cos(60)^2) =>
sin(a) * ((3/4) * cos(a)^2 - (1/4) * sin(a)^2) =>
(1/4) * sin(a) * (3cos(a)^2 - sin(a)^2) =>
(1/4) * sin(a) * (3 - 3sin(a)^2 - sin(a)^2) =>
(1/4) * (3sin(a) - 4sin(a)^3) =>
(1/4) * sin(3a)
sin(a) * (sin(60)cos(a) - sin(a)cos(60)) * (sin(60)cos(a) + sin(a)cos(60)) =>
sin(a) * (sin(60)^2 * cos(a)^2 - sin(a)^2 * cos(60)^2) =>
sin(a) * ((3/4) * cos(a)^2 - (1/4) * sin(a)^2) =>
(1/4) * sin(a) * (3cos(a)^2 - sin(a)^2) =>
(1/4) * sin(a) * (3 - 3sin(a)^2 - sin(a)^2) =>
(1/4) * (3sin(a) - 4sin(a)^3) =>
(1/4) * sin(3a)
Similar questions