Math, asked by kaveri64, 9 months ago

prove the identity (1-cos^2 theta)sec^2 theta = tan^2 theta​

Answers

Answered by nirmalanagaraju01
0

Answer:

Lhs=Rhs

Step-by-step explanation:

Explanation:

sec2θ(1−cos2θ)=tan2θ

Left Side :=sec2θ(1−cos2θ)

=sec2θsin2θ

=1-cos2θ⋅sin2θ

=sin2θcos2θ

=tan2θ

∴= Right Side

Answered by Anonymous
6

\large{\underline{\bf{\green{To\:prove:-}}}}

(1-cos^2 theta)sec^2 theta = tan^2 theta

\huge{\underline{\bf{\red{Solution:-}}}}

 : \implies \bf\:(1 -  {cos}^{2}  \theta)  {sec}^{2} \theta =  {tan}^{2}  \theta \\  \\: \implies \bf\:LHS \\  \\   : \implies \bf\:(1 -  {cos}^{2}   \theta) \frac{1}{ {cos}^{2}  \theta}   \\   \\  : \implies \: \: { \boxed{ \purple{ \bf{ {sin}^{2} \theta = 1 -  {cos}^{2} \theta  }}}}\\ \\: \implies \bf\:  ({sin}^{2}   \theta) \frac{1}{cos {}^{2} \theta }  \\  \\ : \implies \:  { \boxed{ \bf{ \purple{ \frac{ {sin}^{2} \theta }{ {cos}^{2} \theta } =  {tan}^{2} \theta  }}}} \\  \\: \implies \: \bf\frac{ {sin}^{2} \theta }{ {cos}^{2}  \theta}   \\  \\ : \implies\bf \: \bf {tan}^{2}  \theta

Hence proved

LHS = RHS

━━━━━━━━━━━━━━━━━━━━━━

Some important identities:-

{ \blue{ \bf{cosec\theta=\frac{1}{sin\theta}}}}\\

{ \blue{ \bf{sec\theta=\frac{1}{cos\theta}}}}\\

{ \blue{ \bf{cot\theta=\frac{1}{tan\theta}}}}\\

{ \blue{ \bf{tan\theta=\frac{sin\theta}{cos\theta}}}}\\

{ \blue{ \bf{cot\theta=\frac{cos\theta}{sin\theta}}}}\\

{ \blue{ \bf{tan\theta.cot\theta=1}}}\\

{ \blue{ \bf{sin^2\theta+cos^2\theta=1}}}\\

{ \blue{ \bf{1+tan^2\theta=sec^2\theta}}}\\

{ \blue{ \bf{1+cot^2\theta=cosec^2\theta}}}\\

___________________________

Similar questions