Math, asked by kavita9612, 1 year ago

prove the identity (1+cot theta +tan theta )(sin theta - cos theta )=sec theta/cosec²theta-cosectheta/sec² theta

Answers

Answered by Auxiliary
30

Here is the answer

Hope it helps

Attachments:
Answered by sanjeevk28012
8

Given :

The Trigonometrical identity as

( 1 + cotФ + tanФ ) ( sinФ - cosФ ) = \dfrac{sec\Theta }{cosec^{2}\Theta } - \dfrac{cosec\Theta }{sec^{2}\Theta }

To Prove  :

( 1 + cotФ + tanФ ) ( sinФ - cosФ ) = \dfrac{sec\Theta }{cosec^{2}\Theta } - \dfrac{cosec\Theta }{sec^{2}\Theta }

Solution :

From Left hand side

( 1 + cotФ + tanФ ) ( sinФ - cosФ ) = ( 1 +\dfrac{sin\Theta }{cos\Theta }+\dfrac{cos\Theta }{sin\Theta })   ( sinФ - cosФ )

                                                       = \dfrac{sin\Theta cos\Theta+sin^{2}\Theta +cos^{2}\Theta }{sin\Theta cos\Theta } ( sinФ - cosФ )

                                                       = \dfrac{sin\Theta cos\Theta+1}{sin\Theta cos\Theta }( sinФ - cosФ )

                                                  = sinФ ( \dfrac{sin\Theta cos\Theta+1}{sin\Theta cos\Theta }) - cosФ ( \dfrac{sin\Theta cos\Theta+1}{sin\Theta cos\Theta })    

                                                  = ( \dfrac{1}{cos\Theta } + sinФ ) - (   \dfrac{1}{sin\Theta } + cosФ )  

                                                  = secФ + sinФ - cosecФ - cosФ           .......1

Now,

From Right hand side

 \dfrac{sec\Theta }{cosec^{2}\Theta } - \dfrac{cosec\Theta }{sec^{2}\Theta }  =  \dfrac{\dfrac{1}{cos\Theta }}{\dfrac{1}{sin^{2}\Theta }}  -     \dfrac{\dfrac{1}{sin\Theta }}{\dfrac{1}{cos^{2}\Theta }}            

                             = \dfrac{sin^{2}\Theta }{cos\Theta } -    \dfrac{cos^{2}\Theta }{sin\Theta }

                            = \dfrac{sin^{3}\Theta -cos^{3}\Theta }{cos\Theta sin\Theta  }

                            = \dfrac{(sin\Theta -cos\Theta )(sin^{2}\Theta +cos^{2}\Theta +sin\Theta cos\Theta )}{sin\Theta cos\Theta }

                           = \dfrac{(sin\Theta -cos\Theta )(1 +sin\Theta cos\Theta )}{sin\Theta cos\Theta }

                           = \dfrac{1}{cos\Theta } + sinФ -   \dfrac{1}{sin\Theta } + cosФ

                          = secФ + sinФ - cosecФ - cosФ         .........2

So From 1 and 2

Left hand side = Right hand side

Hence,  ( 1 + cotФ + tanФ ) ( sinФ - cosФ ) = \dfrac{sec\Theta }{cosec^{2}\Theta } - \dfrac{cosec\Theta }{sec^{2}\Theta }  is proved  Answer

Similar questions