Math, asked by prince792, 1 year ago

prove the identity:-
1/ (sec x + tan x) -1/cos x = 1/cos x - 1/(sec x - tan x )

Answers

Answered by sivaprasath
3

Step-by-step explanation:

Given :

To prove :

\frac{1}{secX + tanX} - \frac{1}{cosX} = \frac{1}{cosX} - \frac{1}{secX-tanX}

Proof :

We know that,

sec^2X - tan^2X = 1

(secX-tanX)(secX+tanX)=1 ..(i)

_

From (i)

secX-tanX = \frac{1}{secX + tanX} ..(ii)

_

From (i)

secX+tanX = \frac{1}{secX - tanX} ..(iii)

__

We know that,

\frac{1}{cosX} = secX ...(iv)

Hence,

LHS = \frac{1}{secX + tanX}  - \frac{1}{cosX}

= secX - tanX - secX = -tanX (from (iii) & (iv)

_

RHS = \frac{1}{cosX} - \frac{1}{secX - tanX}

RHS =secX - (secX + tanX)

RHS =secX - secX - tanX

RHS =- tanX

_

∴ LHS = RHS,

Hence, proved.

Similar questions